home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Chip: 2001 Haziran
/
CHIP Haziran2001.iso
/
prog
/
haziran
/
19
/
setup.exe
/
data.z
/
amcclib.c
< prev
next >
Wrap
C/C++ Source or Header
|
2001-04-11
|
22KB
|
713 lines
////////////////////////////////////////////////////////////////
// File - AMCCLIB.C
//
// Library for 'WinDriver for AMCC 5933' API.
// The basic idea is to get a handle for the board
// with AMCC_Open() and use it in the rest of the program
// when calling WD functions. Call AMCC_Close() when done.
//
////////////////////////////////////////////////////////////////
#include "../../include/windrvr.h"
#include "../../include/windrvr_int_thread.h"
#include "amcclib.h"
#include <stdio.h>
#if !defined(WINCE)
#include <time.h>
#else
extern time_t time();
#endif
// this string is set to an error message, if one occurs
CHAR AMCC_ErrorString[1024];
// internal function used by AMCC_Open()
BOOL AMCC_DetectCardElements(AMCCHANDLE hAmcc);
DWORD AMCC_CountCards (DWORD dwVendorID, DWORD dwDeviceID)
{
WD_VERSION ver;
WD_PCI_SCAN_CARDS pciScan;
HANDLE hWD = INVALID_HANDLE_VALUE;
AMCC_ErrorString[0] = '\0';
hWD = WD_Open();
// check if handle valid & version OK
if (hWD==INVALID_HANDLE_VALUE)
{
sprintf( AMCC_ErrorString, "Failed opening " WD_PROD_NAME " device\n");
return 0;
}
BZERO(ver);
WD_Version(hWD,&ver);
if (ver.dwVer<WD_VER)
{
sprintf( AMCC_ErrorString, "Incorrect " WD_PROD_NAME " version\n");
WD_Close (hWD);
return 0;
}
BZERO(pciScan);
pciScan.searchId.dwVendorId = dwVendorID;
pciScan.searchId.dwDeviceId = dwDeviceID;
WD_PciScanCards (hWD, &pciScan);
WD_Close (hWD);
if (pciScan.dwCards==0)
sprintf( AMCC_ErrorString, "no cards found\n");
return pciScan.dwCards;
}
BOOL AMCC_Open (AMCCHANDLE *phAmcc, DWORD dwVendorID, DWORD dwDeviceID, DWORD nCardNum, DWORD dwOptions)
{
AMCCHANDLE hAmcc = (AMCCHANDLE) malloc (sizeof (AMCC_STRUCT));
WD_VERSION ver;
WD_PCI_SCAN_CARDS pciScan;
WD_PCI_CARD_INFO pciCardInfo;
*phAmcc = NULL;
AMCC_ErrorString[0] = '\0';
BZERO(*hAmcc);
hAmcc->hWD = WD_Open();
// check if handle valid & version OK
if (hAmcc->hWD==INVALID_HANDLE_VALUE)
{
sprintf( AMCC_ErrorString, "Failed opening " WD_PROD_NAME " device\n");
goto Exit;
}
BZERO(ver);
WD_Version(hAmcc->hWD,&ver);
if (ver.dwVer<WD_VER)
{
sprintf( AMCC_ErrorString, "Incorrect " WD_PROD_NAME " version\n");
goto Exit;
}
BZERO(pciScan);
pciScan.searchId.dwVendorId = dwVendorID;
pciScan.searchId.dwDeviceId = dwDeviceID;
WD_PciScanCards (hAmcc->hWD, &pciScan);
if (pciScan.dwCards==0) // Found at least one card
{
sprintf( AMCC_ErrorString, "Could not find PCI card\n");
goto Exit;
}
if (pciScan.dwCards<=nCardNum)
{
sprintf( AMCC_ErrorString, "Card out of range of available cards\n");
goto Exit;
}
BZERO(pciCardInfo);
pciCardInfo.pciSlot = pciScan.cardSlot[nCardNum];
WD_PciGetCardInfo (hAmcc->hWD, &pciCardInfo);
hAmcc->pciSlot = pciCardInfo.pciSlot;
hAmcc->cardReg.Card = pciCardInfo.Card;
hAmcc->fUseInt = (dwOptions & AMCC_OPEN_USE_INT) ? TRUE : FALSE;
if (!hAmcc->fUseInt)
{
DWORD i;
// Remove interrupt item if not needed
for (i=0; i<hAmcc->cardReg.Card.dwItems; i++)
{
WD_ITEMS *pItem = &hAmcc->cardReg.Card.Item[i];
if (pItem->item==ITEM_INTERRUPT)
pItem->item = ITEM_NONE;
}
}
else
{
DWORD i;
// make interrupt resource sharable
for (i=0; i<hAmcc->cardReg.Card.dwItems; i++)
{
WD_ITEMS *pItem = &hAmcc->cardReg.Card.Item[i];
if (pItem->item==ITEM_INTERRUPT)
pItem->fNotSharable = FALSE;
}
}
hAmcc->cardReg.fCheckLockOnly = FALSE;
WD_CardRegister (hAmcc->hWD, &hAmcc->cardReg);
if (hAmcc->cardReg.hCard==0)
{
sprintf ( AMCC_ErrorString, "Failed locking device\n");
goto Exit;
}
if (!AMCC_DetectCardElements(hAmcc))
{
sprintf ( AMCC_ErrorString, "Card does not have all items expected for AMCC\n");
goto Exit;
}
// Open finished OK
*phAmcc = hAmcc;
return TRUE;
Exit:
// Error durin Open
if (hAmcc->cardReg.hCard)
WD_CardUnregister(hAmcc->hWD, &hAmcc->cardReg);
if (hAmcc->hWD!=INVALID_HANDLE_VALUE)
WD_Close(hAmcc->hWD);
free (hAmcc);
return FALSE;
}
DWORD AMCC_ReadPCIReg(AMCCHANDLE hAmcc, DWORD dwReg)
{
WD_PCI_CONFIG_DUMP pciCnf;
DWORD dwVal;
BZERO(pciCnf);
pciCnf.pciSlot = hAmcc->pciSlot;
pciCnf.pBuffer = &dwVal;
pciCnf.dwOffset = dwReg;
pciCnf.dwBytes = 4;
pciCnf.fIsRead = TRUE;
WD_PciConfigDump(hAmcc->hWD,&pciCnf);
return dwVal;
}
void AMCC_WritePCIReg(AMCCHANDLE hAmcc, DWORD dwReg, DWORD dwData)
{
WD_PCI_CONFIG_DUMP pciCnf;
BZERO (pciCnf);
pciCnf.pciSlot = hAmcc->pciSlot;
pciCnf.pBuffer = &dwData;
pciCnf.dwOffset = dwReg;
pciCnf.dwBytes = 4;
pciCnf.fIsRead = FALSE;
WD_PciConfigDump(hAmcc->hWD,&pciCnf);
}
BOOL AMCC_DetectCardElements(AMCCHANDLE hAmcc)
{
DWORD i;
DWORD ad_sp;
BZERO(hAmcc->Int);
BZERO(hAmcc->addrDesc);
for (i=0; i<hAmcc->cardReg.Card.dwItems; i++)
{
WD_ITEMS *pItem = &hAmcc->cardReg.Card.Item[i];
switch (pItem->item)
{
case ITEM_MEMORY:
case ITEM_IO:
{
DWORD dwBytes;
DWORD dwAddr;
DWORD dwPhysAddr;
DWORD dwAddrDirect = 0;
BOOL fIsMemory;
if (pItem->item==ITEM_MEMORY)
{
dwBytes = pItem->I.Mem.dwBytes;
dwAddr = pItem->I.Mem.dwTransAddr;
dwAddrDirect = pItem->I.Mem.dwUserDirectAddr;
dwPhysAddr = pItem->I.Mem.dwPhysicalAddr;
fIsMemory = TRUE;
}
else
{
dwBytes = pItem->I.IO.dwBytes;
dwAddr = pItem->I.IO.dwAddr;
dwPhysAddr = dwAddr & 0xffff;
fIsMemory = FALSE;
}
for (ad_sp=AMCC_ADDR_REG; ad_sp<=AMCC_ADDR_NOT_USED; ad_sp++)
{
DWORD dwPCIAddr;
if (hAmcc->addrDesc[ad_sp].dwAddr) continue;
dwPCIAddr = AMCC_ReadPCIReg(hAmcc, PCI_BAR0 + ad_sp*4);
if (dwPCIAddr & 1)
{
if (fIsMemory) continue;
dwPCIAddr &= ~0x3;
}
else
{
if (!fIsMemory) continue;
dwPCIAddr &= ~0xf;
}
if (dwPCIAddr==dwPhysAddr)
break;
}
if (ad_sp<=AMCC_ADDR_NOT_USED)
{
DWORD j;
hAmcc->addrDesc[ad_sp].dwBytes = dwBytes;
hAmcc->addrDesc[ad_sp].dwAddr = dwAddr;
hAmcc->addrDesc[ad_sp].dwAddrDirect = dwAddrDirect;
hAmcc->addrDesc[ad_sp].fIsMemory = fIsMemory;
hAmcc->addrDesc[ad_sp].dwMask = 0;
for (j=1; j<hAmcc->addrDesc[ad_sp].dwBytes && j!=0x80000000; j *= 2)
{
hAmcc->addrDesc[ad_sp].dwMask =
(hAmcc->addrDesc[ad_sp].dwMask << 1) | 1;
}
}
}
break;
case ITEM_INTERRUPT:
if (hAmcc->Int.Int.hInterrupt) return FALSE;
hAmcc->Int.Int.hInterrupt = pItem->I.Int.hInterrupt;
break;
}
}
// check that all the items needed were found
// check if interrupt found
if (hAmcc->fUseInt && !hAmcc->Int.Int.hInterrupt)
{
return FALSE;
}
// check that the registers space was found
if (!AMCC_IsAddrSpaceActive(hAmcc, AMCC_ADDR_REG))
return FALSE;
// check that at least one memory space was found
//for (i = AMCC_ADDR_SPACE0; i<=AMCC_ADDR_NOT_USED; i++)
// if (AMCC_IsAddrSpaceActive(hAmcc, i)) break;
//if (i>AMCC_ADDR_NOT_USED) return FALSE;
return TRUE;
}
void AMCC_Close(AMCCHANDLE hAmcc)
{
// disable interrupts
if (AMCC_IntIsEnabled(hAmcc))
AMCC_IntDisable(hAmcc);
// unregister card
if (hAmcc->cardReg.hCard)
WD_CardUnregister(hAmcc->hWD, &hAmcc->cardReg);
// close WinDriver
WD_Close(hAmcc->hWD);
free (hAmcc);
}
BOOL AMCC_IsAddrSpaceActive(AMCCHANDLE hAmcc, AMCC_ADDR addrSpace)
{
return hAmcc->addrDesc[addrSpace].dwAddr!=0;
}
void AMCC_WriteRegDWord (AMCCHANDLE hAmcc, DWORD dwReg, DWORD data)
{
AMCC_WriteDWord (hAmcc, AMCC_ADDR_REG, dwReg, data);
}
DWORD AMCC_ReadRegDWord (AMCCHANDLE hAmcc, DWORD dwReg)
{
return AMCC_ReadDWord (hAmcc, AMCC_ADDR_REG, dwReg);
}
void AMCC_WriteRegWord (AMCCHANDLE hAmcc, DWORD dwReg, WORD data)
{
AMCC_WriteWord (hAmcc, AMCC_ADDR_REG, dwReg, data);
}
WORD AMCC_ReadRegWord (AMCCHANDLE hAmcc, DWORD dwReg)
{
return AMCC_ReadWord (hAmcc, AMCC_ADDR_REG, dwReg);
}
void AMCC_WriteRegByte (AMCCHANDLE hAmcc, DWORD dwReg, BYTE data)
{
AMCC_WriteByte (hAmcc, AMCC_ADDR_REG, dwReg, data);
}
BYTE AMCC_ReadRegByte (AMCCHANDLE hAmcc, DWORD dwReg)
{
return AMCC_ReadByte (hAmcc, AMCC_ADDR_REG, dwReg);
}
// performs a single 32 bit write from address space
void AMCC_WriteDWord(AMCCHANDLE hAmcc, AMCC_ADDR addrSpace, DWORD dwLocalAddr, DWORD data)
{
if (hAmcc->addrDesc[addrSpace].fIsMemory)
{
DWORD dwAddr = hAmcc->addrDesc[addrSpace].dwAddrDirect + dwLocalAddr;
DWORD *pDword = (DWORD *) dwAddr;
*pDword = data;
}
else
{
DWORD dwAddr = hAmcc->addrDesc[addrSpace].dwAddr + dwLocalAddr;
WD_TRANSFER trans;
BZERO(trans);
trans.cmdTrans = WP_DWORD;
trans.dwPort = dwAddr;
trans.Data.Dword = data;
WD_Transfer (hAmcc->hWD, &trans);
}
}
// performs a single 32 bit read from address space
DWORD AMCC_ReadDWord(AMCCHANDLE hAmcc, AMCC_ADDR addrSpace, DWORD dwLocalAddr)
{
if (hAmcc->addrDesc[addrSpace].fIsMemory)
{
DWORD dwAddr = hAmcc->addrDesc[addrSpace].dwAddrDirect + dwLocalAddr;
DWORD *pDword = (DWORD *) dwAddr;
return *pDword;
}
else
{
DWORD dwAddr = hAmcc->addrDesc[addrSpace].dwAddr + dwLocalAddr;
WD_TRANSFER trans;
BZERO(trans);
trans.cmdTrans = RP_DWORD;
trans.dwPort = dwAddr;
WD_Transfer (hAmcc->hWD, &trans);
return trans.Data.Dword;
}
}
// performs a single 16 bit write from address space
void AMCC_WriteWord(AMCCHANDLE hAmcc, AMCC_ADDR addrSpace, DWORD dwLocalAddr, WORD data)
{
if (hAmcc->addrDesc[addrSpace].fIsMemory)
{
DWORD dwAddr = hAmcc->addrDesc[addrSpace].dwAddrDirect + dwLocalAddr;
WORD *pWord = (WORD *) dwAddr;
*pWord = data;
}
else
{
DWORD dwAddr = hAmcc->addrDesc[addrSpace].dwAddr + dwLocalAddr;
WD_TRANSFER trans;
BZERO(trans);
trans.cmdTrans = WP_WORD;
trans.dwPort = dwAddr;
trans.Data.Word = data;
WD_Transfer (hAmcc->hWD, &trans);
}
}
// performs a single 16 bit read from address space
WORD AMCC_ReadWord(AMCCHANDLE hAmcc, AMCC_ADDR addrSpace, DWORD dwLocalAddr)
{
if (hAmcc->addrDesc[addrSpace].fIsMemory)
{
DWORD dwAddr = hAmcc->addrDesc[addrSpace].dwAddrDirect + dwLocalAddr;
WORD *pWord = (WORD *) dwAddr;
return *pWord;
}
else
{
DWORD dwAddr = hAmcc->addrDesc[addrSpace].dwAddr + dwLocalAddr;
WD_TRANSFER trans;
BZERO(trans);
trans.cmdTrans = RP_WORD;
trans.dwPort = dwAddr;
WD_Transfer (hAmcc->hWD, &trans);
return trans.Data.Word;
}
}
// performs a single 8 bit write from address space
void AMCC_WriteByte(AMCCHANDLE hAmcc, AMCC_ADDR addrSpace, DWORD dwLocalAddr, BYTE data)
{
if (hAmcc->addrDesc[addrSpace].fIsMemory)
{
DWORD dwAddr = hAmcc->addrDesc[addrSpace].dwAddrDirect + dwLocalAddr;
BYTE *pByte = (BYTE *) dwAddr;
*pByte = data;
}
else
{
DWORD dwAddr = hAmcc->addrDesc[addrSpace].dwAddr + dwLocalAddr;
WD_TRANSFER trans;
BZERO(trans);
trans.cmdTrans = WP_BYTE;
trans.dwPort = dwAddr;
trans.Data.Byte = data;
WD_Transfer (hAmcc->hWD, &trans);
}
}
// performs a single 8 bit read from address space
BYTE AMCC_ReadByte(AMCCHANDLE hAmcc, AMCC_ADDR addrSpace, DWORD dwLocalAddr)
{
if (hAmcc->addrDesc[addrSpace].fIsMemory)
{
DWORD dwAddr = hAmcc->addrDesc[addrSpace].dwAddrDirect + dwLocalAddr;
BYTE *pByte = (BYTE *) dwAddr;
return *pByte;
}
else
{
DWORD dwAddr = hAmcc->addrDesc[addrSpace].dwAddr + dwLocalAddr;
WD_TRANSFER trans;
BZERO(trans);
trans.cmdTrans = RP_BYTE;
trans.dwPort = dwAddr;
WD_Transfer (hAmcc->hWD, &trans);
return trans.Data.Byte;
}
}
void AMCC_ReadWriteSpaceBlock (AMCCHANDLE hAmcc, DWORD dwOffset, PVOID buf,
DWORD dwBytes, BOOL fIsRead, AMCC_ADDR addrSpace, AMCC_MODE mode)
{
WD_TRANSFER trans;
DWORD dwAddr = hAmcc->addrDesc[addrSpace].dwAddr +
(hAmcc->addrDesc[addrSpace].dwMask & dwOffset);
BZERO(trans);
if (hAmcc->addrDesc[addrSpace].fIsMemory)
{
if (fIsRead)
{
if (mode==AMCC_MODE_BYTE) trans.cmdTrans = RM_SBYTE;
else if (mode==AMCC_MODE_WORD) trans.cmdTrans = RM_SWORD;
else trans.cmdTrans = RM_SDWORD;
}
else
{
if (mode==AMCC_MODE_BYTE) trans.cmdTrans = WM_SBYTE;
else if (mode==AMCC_MODE_WORD) trans.cmdTrans = WM_SWORD;
else trans.cmdTrans = WM_SDWORD;
}
}
else
{
if (fIsRead)
{
if (mode==AMCC_MODE_BYTE) trans.cmdTrans = RP_SBYTE;
else if (mode==AMCC_MODE_WORD) trans.cmdTrans = RP_SWORD;
else trans.cmdTrans = RP_SDWORD;
}
else
{
if (mode==AMCC_MODE_BYTE) trans.cmdTrans = WP_SBYTE;
else if (mode==AMCC_MODE_WORD) trans.cmdTrans = WP_SWORD;
else trans.cmdTrans = WP_SDWORD;
}
}
trans.dwPort = dwAddr;
trans.fAutoinc = TRUE;
trans.dwBytes = dwBytes;
trans.dwOptions = 0;
trans.Data.pBuffer = buf;
WD_Transfer (hAmcc->hWD, &trans);
}
void AMCC_ReadSpaceBlock (AMCCHANDLE hAmcc, DWORD dwOffset, PVOID buf,
DWORD dwBytes, AMCC_ADDR addrSpace)
{
AMCC_ReadWriteSpaceBlock (hAmcc, dwOffset, buf, dwBytes, TRUE, addrSpace, AMCC_MODE_DWORD);
}
void AMCC_WriteSpaceBlock (AMCCHANDLE hAmcc, DWORD dwOffset, PVOID buf,
DWORD dwBytes, AMCC_ADDR addrSpace)
{
AMCC_ReadWriteSpaceBlock (hAmcc, dwOffset, buf, dwBytes, FALSE, addrSpace, AMCC_MODE_DWORD);
}
//////////////////////////////////////////////////////////////////////////////
// Interrupts
//////////////////////////////////////////////////////////////////////////////
BOOL AMCC_IntIsEnabled (AMCCHANDLE hAmcc)
{
if (!hAmcc->fUseInt) return FALSE;
if (!hAmcc->Int.hThread) return FALSE;
return TRUE;
}
VOID AMCC_IntHandler (PVOID pData)
{
AMCCHANDLE hAmcc = (AMCCHANDLE) pData;
AMCC_INT_RESULT intResult;
intResult.dwCounter = hAmcc->Int.Int.dwCounter;
intResult.dwLost = hAmcc->Int.Int.dwLost;
intResult.fStopped = hAmcc->Int.Int.fStopped;
intResult.dwStatusReg = hAmcc->Int.Trans[0].Data.Dword;
hAmcc->Int.funcIntHandler(hAmcc, &intResult);
}
BOOL AMCC_IntEnable (AMCCHANDLE hAmcc, AMCC_INT_HANDLER funcIntHandler)
{
DWORD dwAddr;
if (!hAmcc->fUseInt) return FALSE;
// check if interrupt is already enabled
if (hAmcc->Int.hThread) return FALSE;
BZERO(hAmcc->Int.Trans);
// This is a samlpe of handling interrupts:
// Two transfer commands are issued. First the value of the interrrupt control/status
// register is read. Then, a value of ZERO is written.
// This will cancel interrupts after the first interrupt occurs.
// When using interrupts, this section will have to change:
// you must put transfer commands to CANCEL the source of the interrupt, otherwise, the
// PC will hang when an interrupt occurs!
dwAddr = hAmcc->addrDesc[AMCC_ADDR_REG].dwAddr + INTCSR_ADDR;
hAmcc->Int.Trans[0].cmdTrans = hAmcc->addrDesc[AMCC_ADDR_REG].fIsMemory ? RM_DWORD : RP_DWORD;
hAmcc->Int.Trans[0].dwPort = dwAddr;
hAmcc->Int.Trans[1].cmdTrans = hAmcc->addrDesc[AMCC_ADDR_REG].fIsMemory ? WM_DWORD : WP_DWORD;
hAmcc->Int.Trans[1].dwPort = dwAddr;
hAmcc->Int.Trans[1].Data.Dword = 0x8cc000; // put here the data to write to the control register
hAmcc->Int.Int.dwCmds = 2;
hAmcc->Int.Int.Cmd = hAmcc->Int.Trans;
hAmcc->Int.Int.dwOptions |= INTERRUPT_CMD_COPY;
// this calls WD_IntEnable() and creates an interrupt handler thread
hAmcc->Int.funcIntHandler = funcIntHandler;
if (!InterruptThreadEnable(&hAmcc->Int.hThread, hAmcc->hWD, &hAmcc->Int.Int, AMCC_IntHandler, (PVOID) hAmcc))
return FALSE;
// add here code to physically enable interrupts,
// by setting bits in the INTCSR_ADDR register
return TRUE;
}
void AMCC_IntDisable (AMCCHANDLE hAmcc)
{
if (!hAmcc->fUseInt) return;
if (!hAmcc->Int.hThread) return;
// add here code to physically disable interrupts,
// by clearing bits in the INTCSR_ADDR register
// this calls WD_IntDisable()
InterruptThreadDisable(hAmcc->Int.hThread);
hAmcc->Int.hThread = NULL;
}
//////////////////////////////////////////////////////////////////////////////
// NVRam
//////////////////////////////////////////////////////////////////////////////
BOOL AMCC_WaitForNotBusy(AMCCHANDLE hAmcc)
{
BOOL fReady = FALSE;
time_t timeStart = time(NULL);
for (; !fReady; )
{
if ((AMCC_ReadRegByte(hAmcc, BMCSR_NVCMD_ADDR) & NVRAM_BUSY_BITS) != NVRAM_BUSY_BITS)
{
fReady = TRUE;
}
else
{
if ((time(NULL) - timeStart) > 1) /* More than 1 second? */
break;
}
}
return fReady;
}
BOOL AMCC_ReadNVByte(AMCCHANDLE hAmcc, DWORD dwAddr, BYTE *pbData)
{
if (dwAddr >= AMCC_NVRAM_SIZE) return FALSE;
/* Access non-volatile memory */
/* Wait for nvRAM not busy */
if (!AMCC_WaitForNotBusy(hAmcc)) return FALSE;
/* Load Low address */
AMCC_WriteRegByte(hAmcc, BMCSR_NVCMD_ADDR, NVCMD_LOAD_LOW_BITS);
AMCC_WriteRegByte(hAmcc, BMCSR_NVDATA_ADDR, (BYTE) (dwAddr & 0xff));
/* Load High address */
AMCC_WriteRegByte(hAmcc, BMCSR_NVCMD_ADDR, NVCMD_LOAD_HIGH_BITS);
AMCC_WriteRegByte(hAmcc, BMCSR_NVDATA_ADDR, (BYTE) (dwAddr >> 8));
/* Send Begin Read command */
AMCC_WriteRegByte(hAmcc, BMCSR_NVCMD_ADDR, NVCMD_BEGIN_READ_BITS);
/* Wait for nvRAM not busy */
if (!AMCC_WaitForNotBusy(hAmcc)) return FALSE;
/* Get data from nvRAM Data register */
*pbData = AMCC_ReadRegByte(hAmcc, BMCSR_NVDATA_ADDR);
return TRUE;
}
//////////////////////////////////////////////////////////////////////////////
// DMA
//////////////////////////////////////////////////////////////////////////////
BOOL AMCC_DMAOpen(AMCCHANDLE hAmcc, WD_DMA *pDMA, DWORD dwBytes)
{
AMCC_ErrorString[0] = '\0';
BZERO(*pDMA);
pDMA->pUserAddr = NULL; // the kernel will allocate the buffer
pDMA->dwBytes = dwBytes; // size of buffer to allocate
pDMA->dwOptions = DMA_KERNEL_BUFFER_ALLOC;
WD_DMALock (hAmcc->hWD, pDMA);
if (!pDMA->hDma)
{
sprintf ( AMCC_ErrorString, "Failed allocating the buffer!\n");
return FALSE;
}
return TRUE;
}
void AMCC_DMAClose(AMCCHANDLE hAmcc, WD_DMA *pDMA)
{
WD_DMAUnlock (hAmcc->hWD, pDMA);
}
BOOL AMCC_DMAStart(AMCCHANDLE hAmcc, WD_DMA *pDMA, BOOL fRead,
BOOL fBlocking, DWORD dwBytes, DWORD dwOffset)
{
DWORD dwBMCSR;
// Important note:
// fRead - if TRUE, data moved from the AMCC-card to the PC memory
// fRead - if FALSE, data moved from the PC memory to the AMCC card
// the terms used by AMCC are oposite!
// in AMCC terms - read operation is from PC memory to AMCC card
AMCC_WriteRegDWord(hAmcc, fRead ? MWAR_ADDR : MRAR_ADDR, (DWORD) pDMA->Page[0].pPhysicalAddr + dwOffset);
AMCC_WriteRegDWord(hAmcc, fRead ? MWTC_ADDR : MRTC_ADDR, dwBytes);
dwBMCSR = AMCC_ReadRegDWord(hAmcc, BMCSR_ADDR);
dwBMCSR |= fRead ? BIT10 : BIT14;
AMCC_WriteRegDWord(hAmcc, BMCSR_ADDR, dwBMCSR);
// if blocking then wait for transfer to complete
if (fBlocking)
while (!AMCC_DMAIsDone(hAmcc, fRead));
return TRUE;
}
BOOL AMCC_DMAIsDone(AMCCHANDLE hAmcc, BOOL fRead)
{
DWORD dwBIT = fRead ? BIT18 : BIT19;
DWORD dwINTCSR = AMCC_ReadRegDWord(hAmcc, INTCSR_ADDR);
if (dwINTCSR & dwBIT)
{
AMCC_WriteRegDWord(hAmcc, INTCSR_ADDR, dwBIT);
return TRUE;
}
return FALSE;
}